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SOURCES OF ERROR IN FORECASTS

1) Analysis errors 

- Imperfect DA

- Imperfect/sparse obs

- Imperfect  model

2) Boundary condition errors

- Lateral boundary conditions

- Lower boundary conditions (coupled 

model uncertainty, e.g., land 

surface, waves, ocean, ice, etc.)

3) Model  errors

- Limited resolution

- Dynamic core

- Parameterization of physical 

processes
A stochastic parameterization for deep convection 

based on equilibrium statistics

R. S. Plant and G. C. Craig., JAS, 65 (2008), 87-105 

Wide range 

of 

convective 

states 

consistent 

with given 

resolved 

flow.  Wider 

range for 

smaller grid 

box.



SOURCES OF ERROR IN FORECASTS
Cloud Microphysics Impact on Hurricane Track as Revealed in Idealized Experiments

Robert G. Fovell, Kristen L. Corbosiero, Hung-Chi Kuo 

Journal of the Atmospheric Sciences, Volume 66, Issue 6 (June 2009) pp. 1764-1778

Microphysical assumptions (fall speeds) strongly influence  radial temperature gradients, 

which influence winds at outer radius, influencing beta gyre and storm motion



DEALING WITH MODEL ERROR: POST-PROCESSING

- Diagnosis and 

correction of model 

error from past 

forecasts increases 

forecast skill.

- Extreme events 

benefit more from 

longer archive

- More on post-

processing in 

overview talk by Z. 

Toth

Reforecasts: An Important Dataset for Improving Weather Predictions

Thomas M. Hamill,  Jeffrey S. Whitaker, and Steven L. Mullen  

Bulletin of the American Meteorological Society, Volume 87, Issue 1 (January 2006) pp. 33–46 



Tropical Cyclone Track Forecasts Using an Ensemble of Dynamical Models

J. S. Goerss, Monthly Weather Review, Volume 128,  (2000) pp. 1187-1193 

Simple ensemble average (consensus) may be more accurate, on 

average, than the forecasts of the individual models

MULTI-MODEL ENSEMBLES

Table 2. Homogeneous comparison of the GFDL model, NOGAPS, UKMO, the ensemble average 

(ENSM), and CLIPER TC position errors (km) for a sample of (N) forecasts of tropical storms and 

hurricanes during the 1995–96 Atlantic hurricane seasons.



Real-Time Multimodel Superensemble Forecasts of Atlantic 

Tropical Systems of 1999  

C. Eric Williford,  T. N. Krishnamurti,  R. C. Torres,  S. Cocke,  Z. 

Christidis, and T. S. Vijaya Kumar, MWR, 131, 2003, 1878–1894 

• Model biases of position and 

intensity errors of past forecasts 

summarized via simple linear 

multiple regression.

• Errors for superensemble are 

generally less than those of all the 

participating models during 1-5 day 

real-time forecasts.

MULTI-MODEL ENSEMBLES AND POSTPROCESSING

Fig. 2. (a) The 1998 Atlantic tropical system cross-validation-

based track errors, hours 12–72, including FSU superensemble 

and ensemble mean forecasts; (b) the 1998 Atlantic tropical 

system cross-validation-based intensity errors, hours 12–72, 

including FSU superensemble and ensemble mean forecasts
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Using Initial Condition and Model Physics Perturbations in Short-Range 

Ensemble Simulations of Mesoscale Convective Systems

D. J. Stensrud,  J. –W. Bao, and T. T. Warner, MWR, 128, (2000) 2077–2107 

Two ensembles

1) Different model physics parameterizations

2) Different initial conditions (Monte Carlo)

Findings:

• Model physics ensemble more skillful when 

large-scale forcing for upward motion is week.

• Initial condition ensemble more skillful when 

large scale forcing for upward motion is strong.

MULTI-PARAMETERIZATIONS vs INITIAL PERTURBATIONS

Fig. 12. Tracks of the simulated MCSs from the (a) initial-condition and (b) 

physics ensembles during the 48-h period beginning 1200 UTC 27 May 1985. 

Tracks subjectively determined from 3-h model output. Observed MCS track, 

derived from radar data, shown in gray. 

Ensemble 

MCS Tracks

http://journals.ametsoc.org/action/showFullPopup?doi=10.1175%2F1520-0493%282000%29128%3C2077%3AUICAMP%3E2.0.CO%3B2&id=_e15


Cluster Analysis of Multimodel Ensemble Data from SAMEX 

A. Alhamed, S. Lakshmivarahan, and D. J. Stensrud 

MWR, 130, (2002) pp. 226–256 

•Cluster analysis: Forecasts cluster largely 

by model, occurs within first few hours and 

persists.

•Using totally different models fruitful 

approach; however, these do not produce 

a smooth distribution.

MULTI-MODEL ENSEMBLES

The 3-h accumulated precipitation (mm) valid at 30 h from all 25 

ensemble members grouped subjectively into four clusters. Numbers 

in the upper-left-hand corner indicate the ensemble member as 

defined in Table 1. Isolines every 1 mm 

3hr Accumulated Pcp



On the ability of global Ensemble 
Prediction Systems to predict 

tropical cyclone track probabilities 

S. J. Majumdar and P. M. Finocchio, 
MWR, early online release 

Clustering of 

forecasts also seen 

in Hurricane track 

ensemble 

forecasts.

MULTI-MODEL ENSEMBLES



Stochastic representation of model uncertainties in the ECMWF ensemble prediction system
QJRMS,125, October 1999 Part B, 2887-2908, R. Buizza, M. Miller, T. N. Palmer

• Simulate model random errors associated with physical parameterizations 

by multiplying total parameterized tendencies by random number between 

0.5 and 1.5

• Increases spread of ensemble

• Improves skill of probabilistic prediction of weather parameters such as 

precipitation

STOCHASTIC PERTURBATIONS

• Recent refinements made to stochastic perturbations (Palmer et al 2009)



Ensemble prediction of tropical cyclones using targeted diabatic singular vectors
QJRMS, 127, January 2001 Part B, 709-731, K. Puri, J. Barkmeijer, T. N. Palmer

• Significant spread in tracks from moist-SV based initial perturbations.

• Inclusion of stochastic physics leads to larger spread in the central pressures.

• Higher model resolution (TL255) also lead to significantly increased pressure spread.

STOCHASTIC PERTURBATIONS: IMPACT ON TC INTENSITY
M

S
L
P

Control Stoc  Phy

Trop SV
Trop SV + 

Stoc Phy



A Spectral Stochastic Kinetic Energy Backscatter Scheme and Its Impact on Flow-Dependent Predictability in the 
ECMWF Ensemble Prediction System 

J. Berner, G. J. Shutts, M. Leutbecher, and T. N. Palmer, JAS, 66, (2009) pp. 603–626

• Spectral SKEB used to 

simulate upscale-

propagating errors caused 

by unresolved subgidscale 

processes.

• SEKB gives better spread-

error relationship, more 

realistic KE spectra, 

improved rainfall forecasts, 

better probabilistic skill.

• Improvements most 

pronounced in tropics.

STOCHASTIC KINETIC ENERGY BACKSCATTER (SKEB)

Fig. 6. Kinetic energy spectra for the (a) rotational component of the flow for TL511 

analysis (gray solid), forecasts with the operational ensemble configuration (OPER; 

black solid), and the ensemble system with stochastic backscatter (SSBS-FULLDISS; 

black dashed). Lines denote power-law behavior with slopes of −3 and −5/3. 

High Res

Control

SKEB

http://journals.ametsoc.org/action/showFullPopup?doi=10.1175%2F2008JAS2677.1&id=_e32


Operational Centers: Model Error in Ensemble Design

Current

ECMWF Stochastic perturbations, SKEB (planned)

Meteo Service Canada

Global

Multi-parameterizations, Stochastic pert., SKEB. Physical 

parameterizations that incorporate model uncertainty (planned)

Meteo Service Canada

Mesoscale

Stochastic parameter perturbations

NCEP: GFS Stochastic perturbations

NCEP: SREF Multi-model, multi-parameterizations. Stochastic convection 

(planned)

NRL Global SKEB and Diurnal SST variations (planned).

NRL mesoscale Parameter variations in atmospheric component (planned)

UKMO Random Parameters, SKEB2. Soil moisture and other surface 

perturbations planned.

JMA Stochastic perturbations (planned)

Meteo-France SREP Multi-parameterization

COSMO-DE EPS (DWD) Parameter variations (planned)

COSMO-LEPS (Italy) Multi-parameterizations; perturbations in turbulence scheme



Achievement for HFIP Project from Ensemble Team

Yuejian Zhu, 23 March 2010

NCEP GEFS: 

•There was a major implementation for GEFS (Global Ensemble Forecast System) in 

February 23rd 2010. This upgrade mainly includes:

Increasing horizontal resolution to 70km from 90km

Using 8th order horizontal diffusion instead of 4th order, all resolutions

Adding stochastic perturbation scheme to account for random model errors



Model Error Representation in an Operational Ensemble Kalman Filter

P. L. Houtekamer,  H. L. Mitchell, and X. Deng, MWR,137, (2009) pp. 2126–2143 

Tested in Meteorological Service Canada Ensemble Kalman Filter

(i) Addative isotropic model error perturbations

(ii) Different versions of the model for different ensemble members

(iii) Stochastic perturbations to physical tendencies

(iv) Stochastic kinetic energy backscatter

Findings:

(i) Had largest impact. (ii) had small but clearly positive impact. (iii) and 

(iv) did not lead to further improvements.  (i) and (ii) used in operations.

ACCOUNTING FOR MODEL ERROR IN ENSEMBLE DA



Ensemble Data Assimilation with the NCEP Global Forecast System

J. S. Whitaker,  T. M. Hamill,  X. Wei,  Y. Song, and Z. Toth, MWR, 136, (2008) pp. 463–482 

Tested in NCEP GFS Ensemble DA system (not in forecasts)

(i) additive Inflation (scaled random differences between adjacent 6-h analyses from 

the NCEP-NCAR reanalysis to each ensemble member)

(ii) Multiplicative Inflation (after Anderson and Anderson 1999, inflates ensemble 

perturbations by factor > 1.0)

(iii) Relaxation to prior (Zhang et al 2004), relaxes analysis perturbations back 

toward the prior perturbations independently at each analysis point. Only modified 

where observations have an effect on the analysis.

Each method applied to posterior ensemble, after computation of analysis 

increment and before running the forecasts.

Findings:

(i) Slightly better than (ii) or (iii)

ACCOUNTING FOR MODEL ERROR IN ENSEMBLE DA



A well-designed ensemble should account for model error in some way.  

•What are the model errors/uncertainties that have biggest impact on TC 

forecasts?

•How do we determine the characteristics of these model errors?

Inclusion of model uncertainty can be costly (computationally and effort-wise). 

When is it worthwhile?

•Metric is key (e.g., some forms of uncertainty impact ensemble dispersion, not 

ensemble mean).

Discussion Points



EXTRA SLIDES



Stochastic Parameterizations and Model Uncertainty

Palmer, T. N., R. BUizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. J. Shutts, M. Steinheimer, A. Weisheimer

ECMWF Tech Memo 598, 8 October 2009

•Current system: 

Stochastic Perturbations 

to Parameterization 

tendencies (Buizza et al. 

1999).  Concerned with 

aspects of uncertainty in 

existing parameterization 

schemes (e.g., grid-box 

sampling)

•Testing SKEB (Shutts 

2005). Concerned with 

physical process missing 

in conventional 

parameterization 

schemes.  Aspects of 

structural uncertainty in 

conventional 

parameterization

ECMWF



Towards Random Sampling of Model Error in the Canadian Ensemble Prediction System 

Charron, M., G. Pellerin, L. Spacek, P. L Houtekamer, N. Gagnon, H. L. Mitchell, and L. Michelin 

Monthly Weather Review (early online release) 

•Current system has 

•Multi-Parameterizations (Kuo, RAS, KF for deep convection): Biggest impact on 

mid-trop temp.

•Challenge to maintain, artificial multi-modality, but stochastic forcing alone 

less skillful

•Stochastic perturbations (Buizza et al 1999): Dispersion of upper-air dynamic 

fields and 500-hPa Z bias degraded when stochastic perturbations removed.

•SKEB (Shutts 2005): Forcing of rotational components more effective than 

forcing divergent components.  Has an impact on model biases.  Mostly improves 

the reliability of the forecasts through ensemble dispersion.

•Recently went from two dynamical cores to one (GEM), as SEF considerably less 

skillful

•Eventually move to physical parameterizations that incorporate probability and 

random realizations

Meteorological Service of Canada



A Stochastic Parameterization Scheme within NCEP Global Ensemble Forecast System.

D. Hou, Z. Toth, and Y. Zhu,

Extended Abstract, AMS Annual Meeting, Atlanta, GA, 2006

NCEP GEFS: 

Stochastic Forcing 

linked to total conventional 

forcing (including grid scale 

and subgrid scale 

parameterizations)  

sampled from differences in 

conventional tendency 

between ensemble members 

and control forecast.  

Scheme applied every 6 

hours.

Increased spread, lower RMS 

error, lower average error, 

decreased bias.



NCEP SREF System Upgrade in 2009

J. Du, G. DiMego, Z. Toth, D. Jovic, B. Zhoa, J. Zhu, H.-Y. Chuang, J. Wang, H. Juang, E. Rogers, and Y. Lin

19th conf. on NWP, 23rd Conf on WAF, 1-5 June 2009, Omaha NE.

NCEP SREF: 

•Current SREF: Multi-

model and multi-physics 

approach, 21 members, 

32Km, 72hr

•Multi-model (Eta, RSM, 

NMM, ARW). Multi 

parameterizations (ET:BM 

and KF, RSM: SAS and 

Ferrier MP and RAS 

Zhao MP).

•Future: stochastic 

parameterized physics, 

one single unified 

modeling framework 

(NOAA Environmental 

Modeling System), 

surface variable 

perturbations.



Impact of Stochastic Convection on the Ensemble Transform 

C. A. Reynolds, J. Teixeira, and J. G. McLay, MWR,136, (2008) pp. 4517–4526

• No accounting for model error in 

current operational system.

• Under testing:

• Stochastic Perturbations 

(convection, SKEB)

• Diurnal SST variations

• Parameter Variations

• Model changes will have both direct 

and indirect impact on ensembles 

produced using a cycling scheme.

NRL/FNMOC



The MOGREPS Short-range Ensemble Prediction System

N. E. Bowler, A. Arribas, K. R. Mylne, K. B. Robertson and S. E. Beare

QJRMS 2008, v134, 703-722.

Stochastic Physics in MOGREPS and plans for perturbations of surface fields.

Warren Tennant, 31st EWGLAM Workshop 28 Sep 1 Oct 2009

•Random Parameters

•Random parameters Pt = u + r(Pt-1 –u) +e

•Pt is parameter value, u is mean value, r is auto correlation of P, e is 

stochastic shock term

•Eight parameters from four different physical parameterizations included 

(lsp, conv. BL, and GWD)

•SKEB2

•No longer using stochastic convection vorticity scheme

•Testing impact of surface perturbations ( SST, soil moisture)

UKMO



Stochastic Physics in MOGREPS and plans for perturbations of surface fields.

Warren Tennant, 31st EWGLAM Workshop 28 Sep 1 Oct 2009

UKMO: SKEB2



Stochastic Physics in MOGREPS and plans for perturbations of surface fields.

Warren Tennant, 31st EWGLAM Workshop 28 Sep 1 Oct 2009

UKMO: SKEB2



TIGGE: Preliminary results on comparing and combining ensembles
Quarterly Journal of the Royal Meteorological Society

Volume 134, Issue 637, Date: October 2008 Part B, Pages: 2029-2050
Young-Youn Park, Roberto Buizza, Martin Leutbecher

• Differences between skill of 

best ensemble system and 

combined ensemble 

generated considering up to 

four different ensemble 

systems.  Difference is very 

small in areas where 

ECMWF ensemble system 

has a well tuned ensemble 

spread, equivalent to less 

than 6 hours predictability in 

the medium range.

• Larger and mode detectable 

in areas where EC system 

has too low ensemble spread 

(e.g., tropics).

MULTI-MODEL ENSEMBLE of ENSEMBLES



A Spectral Stochastic Kinetic Energy Backscatter Scheme and Its Impact on Flow-Dependent 
Predictability in the ECMWF Ensemble Prediction System 

J. Berner, G. J. Shutts, M. Leutbecher, and T. N. Palmer,

Journal of the Atmospheric Sciences
Volume 66, Issue 3 (March 2009) pp. 603–626

• Spectral stochastic kinetic 

energy backscatter used to 

simulate upscale-

propagating errors caused by 

unresolved subgidscale 

processes.

• ECMWF ensemble shows 

better spread-error 

relationship, more realistic 

KE spectra, better 

representation of forecast 

error growth, improved flow-

dependent predictability, 

improved rainfall forecasts, 

better probabilistic skill.

• Improvements most 

pronounced in tropics.

STOCHASTIC KINETIC ENERGY BACKSCATTER



Short-Range Ensemble Forecasts of Precipitation during the Southwest Monsoon

D. R. Bright and S. L. Mullen, Wea. Forecasting, 17 (2002) pp. 1080-1100 

• MM5 Ensembles with Multi-parameterizations and stochastic perturbations to 

KF cumulus and PBL.

• Choice of cumulus parameterization effects predicted precip much more than 

PBL scheme or stochastic physics.

Stochastic Parameterizations

Influence of a stochastic moist convective parameterization on tropical climate variability.  

Lin, J. W-B. and J. D. Neelin, Geophys. Res. Lett.,  27 (2000) pp. 3691-3694

• Simple stochastic convective parameterization that includes a random 

contribution to the convective available potential energy in deep convection  

(BM) scheme. Impacts tropical intraseasonal variability. 

• Sensitive to noise amplitude and autocorrelation time. (in intermediate 

complexity model, quasi-equilibrium tropical circulation model



Toward Improved Convection-Allowing Ensembles: Model Physics Sensitivities and Optimizing 

Probabilistic Guidance with Small Ensemble Membership 

Craig S. Schwartz and co-authors,  Weather and Forecasting ,25, (2010) pp. 263–280

• 10-member 4km ensemble forecasts over US using WRF-ARW for 

2007 NOAA hazardous weather test bed spring experiment.

• Ensemble forecasts reveal WRF-ARW sensitivity to microphysics and 

PBL schemes.  

• A neighborhood approach is described and shown to considerably 

enhance skill of probabilistic precip forecasts when combined with 

traditional ensemble probability field techniques.

ACCOUNTING FOR MODEL ERROR IN ENSEMBLE FORECASTS



Stochastic Parameterizations and Model Uncertainty

Palmer, T. N., R. BUizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. J. Shutts, M. Steinheimer, A. Weisheimer

ECMWF Tech Memo 598, 8 October 2009

•Current system: Stochastic Perturbations to Parameterization tendencies (Buizza et al. 

1999).  Concerned with aspects of uncertainty in existing parameterization schemes 

(e.g., grid-box sampling)

•Recently revised: Old version, different random numbers for u,v, T, and q, 

10x10 boxes, constant for 4 hours. Uniform distribution range

•Same random number for u,v, T and q. Gaussian distribution, spectral pattern 

generator, AR1 process, reduced perturbations near surface.

•Testing SKEB (Shutts 2005). Concerned with physical process missing in conventional 

parameterization schemes.  Aspects of structural uncertainty in conventional 

parameterization

ECMWF



Time Step Sensitivity of Nonlinear Atmospheric Models: Numerical Convergence, Truncation Error 
Growth, and Ensemble Design 

J. Teixeira, C. A. Reynolds, and K. Judd, JAS, 64, (2007) pp. 175–189

• Decoupling of solutions due 

to different time steps follows 

a logarithmic rule (function of 

time step) similar in three 

models of varying 

complexity.

• Suggests different time steps 

may be simple way of 

introducing important 

component of model error in 

ensemble design.

TIME-STEP SENSITIVITY


